Κυριακή 29 Δεκεμβρίου 2019

Η μεταφορά από ένα ουράνιο σώμα, σε άλλο.

 

Μια σφαίρα μάζας m=2kg ηρεμεί στη θέση Α και θέλουμε να την μεταφέρουμε στη θέση Β, του διπλανού σχήματος, όταν μεταξύ των δύο σημείων παρεμβάλλεται ένα βουναλάκι ύψους h1=20m, ενώ η κατακόρυφη απόσταση των δύο σημείων είναι h2=15m. Τριβές δεν υπάρχουν.
i)  Η μεταφορά μπορεί να γίνει με την επίδραση μιας μεταβλητής δύναμης F. Να υπολογιστεί το ελάχιστο έργο της δύναμης F, για την μεταφορά αυτή. Πόσο αυξήθηκε η μηχανική ενέργεια της σφαίρας κατά την παραπάνω μεταφορά;
ii) Εναλλακτικά μπορούμε να εκτοξεύσουμε τη σφαίρα, προσδίδοντάς της κατάλληλη αρχική ταχύτητα, η οποία θα της επιτρέψει να φτάσει στη θέση Β. Να υπολογιστεί η αρχική ταχύτητα εκτόξευσης, καθώς και η αύξηση της μηχανικής ενέργειας της σφαίρας, στην περίπτωση αυτή.
 iii) Ας θεωρήσουμε δύο ουράνια σώματα (δύο πλανήτες τους οποίους για τις ανάγκες του προβλήματος ας τους θεωρήσουμε ακίνητους) και μας ενδιαφέρει η μεταφορά ενός σώματος Σ μάζας m=2kg, από το σημείο Γ στην επιφάνεια του Χ, στο σημείο Δ, στην επιφάνεια του σώματος Υ. Στο διάγραμμα δίνεται ένα ποιοτικό διάγραμμα του δυναμικού του σύνθετου βαρυτικού πεδίου των δύο πλανητών, όπου οι τιμές των δυναμικών των σημείων Γ, Ο (το σημείο με το μέγιστο δυναμικό) και Δ: VΓ= - 6∙10J/kg, VΟ= - 1∙107 J/kg και VΔ= - 2∙107 kg.
α) Ποια η ελάχιστη αρχική κινητική ενέργεια, που πρέπει να προσδώσουμε στο σώμα Σ για την μεταφορά του από τον πλανήτη Χ στον πλανήτη Υ;
β) Να βρεθεί η κινητική ενέργεια του σώματος Σ τη στιγμή που φτάνει στον πλανήτη Υ.

ή

Δεν υπάρχουν σχόλια: