Πέμπτη 9 Μαρτίου 2017

Ένας δορυφόρος σε πτώση.

Ένας δορυφόρος στρέφεται σε κυκλική τροχιά ακτίνας R=10.000km εκτελώντας ομαλή κυκλική κίνηση με περίοδο Τ=10.000s, γύρω από έναν πλανήτη.
i) Να υπολογιστεί η επιτάχυνσή του.
Σε μια στιγμή ο δορυφόρος συγκρούεται με έναν αστεροειδή, με αποτέλεσμα να μηδενιστεί η ταχύτητά του και να αρχίσει να πέφτει προς την επιφάνεια του πλανήτη.
ii) Ποια η αρχική επιτάχυνση με την οποία ξεκινά την πτώση του;
iii) Ποιος ο ρυθμός μεταβολής του μέτρου της ταχύτητας του δορυφόρου, ελάχιστα πριν και ελάχιστα μετά την σύγκρουση;
iv) Μετά από λίγο, ο δορυφόρος περνάει από ένα σημείο Α, όπου η ένταση του πεδίου βαρύτητας του πλανήτη είναι ίση με 8Ν/kg. Ποιος ο ρυθμός μεταβολής της ταχύτητας του δορυφόρου στη θέση αυτή;
v) Αν η μέγιστη επιτάχυνση που αποκτά ο δορυφόρος κατά την πτώση του είναι 16m/s2, να υπολογιστεί η ακτίνα r του πλανήτη.
Ο πλανήτης να θεωρηθεί ακίνητος, χωρίς ατμόσφαιρα, ενώ δεν υπάρχουν βαρυτικά πεδία οφειλόμενα σε άλλα ουράνια σώματα. Δίνεται επίσης π2≈10.
ή
Ένας δορυφόρος σε πτώση.

Δεν υπάρχουν σχόλια: