Ένα μικρό σώμα Σ εκτελεί ομαλή κυκλική κίνηση σε οριζόντιο επίπεδο, δεμένο στο άκρο μη εκτατού νήματος μήκους l=R=(8/π)=2,5m, με ταχύτητα μέτρου υ=2m/s και τη στιγμή t=0 περνά από την θέση Β, όπως το σχήμα (σε κάτοψη). Το κέντρο του κύκλου Ο είναι και αρχή ενός συστήματος ορθογωνίων αξόνων x,y όπου ο άξονας x περνά και από το σημείο Β.
i) Να υπολογισθεί η γωνιακή ταχύτητα περιφοράς του σώματος, καθώς και η γωνία που διαγράφει η επιβατική ακτίνα, σε συνάρτηση με το χρόνο. Να γίνει η γραφική παράσταση φ=f(t), μέχρι τη στιγμή t1=12s. Σε ποια θέση βρίσκεται τη στιγμή αυτή το σώμα;
ii) Να βρείτε την εξίσωση που μας δίνει την τεταγμένη y, της θέσης του σώματος Σ, σε συνάρτηση με το χρόνο και να παρασταθεί γραφικά, μέχρι τη στιγμή t1.
iii) Ποια η αντίστοιχη εξίσωση για την συνιστώσα της ταχύτητας στην διεύθυνση του άξονα y; Να γίνει επίσης η ανάλογη γραφική παράσταση υy =f(t), μέχρι τη στιγμή t1.
iv) Αφού υπολογίσετε την κεντρομόλο επιτάχυνση που ασκείται στο σώμα, να την αναλύσετε στους άξονες x και y και να βρείτε την συνιστώσα της στην διεύθυνση y.
ή
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου